B2-13

A NONLINEAR, DISCRETE~VORTEX~PERTURBATION METHOD FOR UNSTEADY
LIFTING~SURFACE PROBLEMS WITH EDGE SEPARATIONS+

Osama A.
0ld Dominion University, Norfolk, Va.

Kandil#*

23508

Montgomery Page**

Virginia Polytechnic Institute, Blacksburg, Va.

Abstract

The Nonlinear-Discrete Vortex method is coupled
with a perturbation method to solve the problem
of a rectangular wing with small oscillation
about high angles of attack. The solution of the
problem is based on decoupling the steady and
unsteady effects. The steady part of the problem
is a nonlinear one and is solved by the Nonlinear-
Discrete Vortex method. The unsteady part of the
problem is a linear one and is solved directly
without any iteration. So far, the developed
method is restricted to flat rectangular surfaces
with pitching oscillations. Total and distrib-
uted loads of several rectangular wings are
presented as numerical results.

I. Introduction

Progress in the nonlinear, unsteady, lifting-
surface problem up to this point has followed two
distinct lines of approach. In one approach,
Green's theorem is used to recast the problem in
an integral formulationlr2. The problem is then
solved by assuming certain distributions with un-
determined coefficients for the unknowns. These
coefficients are determined by satisfying the
boundary conditions at certain control points.

In the other approach, fundamental solutions to
Laplace's equation is superimposed (e.g. nonlinear,
unsteady, discrete~vortex methods3s%)., The un-
known strengths of the singularities and the shape
of the wake issued from the edges of separation
are found by satisfying the boundary conditions

at certain control points, In both approaches,
the unsteadiness has been handled by shedding
vorticity at discrete time steps, and resolving
the problem at each time step. These methods
provide a powerful tool for the determination of
the transient solution of the general unsteady
flow problem, but they are inadequate for deter-
mining the steady-state behavior of oscillating
wings. This is due to the long computational

time required to solve such problems.

The present method does not suffer from this
drawback. Here, we present a coupled numerical-:
perturbation method to solve the problem. The
unsteady problem is decoupled into a time-inde-
pendent part and a time-dependent part. The
former part is solved by a nonlinear, steady,
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discrete-vortex methods'7while the latter part is
solved by a modified, discrete vortex method in
which we account for vortex shedding and coavection

II. Formulation of the Problem

We consider a rigid rectangular lifting surface
undergoing small harmonic oscillations about a
mean position which makes an angle of attack o
with the undisturbed, time independent, uniform
flow & . The angle of attack 0 ¢ need not be
small.” The fluid is assumed to be ideal and the
flow outside the wing and its wake is irrotational.
Thus, the disturbance potential ¢(r,t) of the flow
is governed by Laplace's equation

V2)=0 in R (1)
where R is the infinite region outside the wing
and its wake. The velocity potential must satisfy
the following conditions on the boundary 9R:

(a) The flow-tangency condition on the
wing surface

oF — ~ - o
5;'+ (qw +V¢) . VF =0 on F(r,t) = 0O (2)

where F is the wing surface.

(b) The kinematical and dynamical conditions
on the wake surface

M+ (e + V) .VW=0 onW(r,t) =0 (3)
3t
Acp (x,8) = = (Y, - Vo) . (2g+ Vo, + Vo)

-2 -g—t— (¢, ='¢) =0 onW(r,t)=0 (4

respectively. The subscripts 1 and 2 refer to the
upper and lower surfaces of the wake W(T¥,t) = O.

(c) The infinity condition
V¢ » 0 far from F(r,t) = 0 and W(T,t) =0 (5)

(d) Kutta condition along the edges of
separation

oF

5 * (e, +V9) . VF=0 onF(r,t)| =0 (6
TT T rEl T T s,
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o (x,t) = = (Vo; - Vh,) . (2e + Vo, + Vo,)

3
-2 3- (¢;-9¢,)=0 on W(F,t)|= 0 (7)

;é E
Figure 1 shows the problem under consideration.
The complexity of the problem stems from the
boundary conditions of equations (3) and (4).
The wake surface W(Y,t) is an unknown of the
problem in addition to the disturbance potential
or its gradient, 1In fact, both W(T,t) and ¢(F,t)
are dependent upon each other and hence the
boundary condition of equation (3) is nonlinear.
Obviously, the boundary condition of equation (4)
is also a nonlinear one. Nevertheless, the un-
steadiness adds to the difficulty of the problem.

r=TYpg,+ I~

One step toward the simplification of the
problem can be achieved by considering the dis-
turbances due to the unsteadiness of the flow to
be small. The problem therefore may be divided,
as it will be shown later, into a steady problem
which is in general a nonlinear one and an un-
steady problem which is a linear one. The solu-
tion of the nonlinear, steady problem is obtained
following Kandil (1974) while the solution of the
unsteady problem follows Kandil (1978). The latter
reference represents the most general form of this
problem. It includes the symmetric and asymmetric
problems with wing deformations. '

III., Approximation with Small,
Harmonic Oscillations

The problem being considered here is that of a
wing undergoing small harmonic oscillations about
a mean position which has an angle of attack Qg
Accordingly, the wing surface can be written as

F(r,t) = F(x) + F () exp (iwt) (8)
where Fu(;) is real and small compared with the
mean value Fg(¥). We now assume the following
forms for the solutions of the velocity potential,
pressure and wake surface:

O(x,t) = dg(X) + ¢, (X) exp (iwt) (9)

Cplrst) = oo (@ + Cpy, (x) exp(int) (10)

%
W(r,t) = Wg(r) + Wy (r)exp (iwt) (11)
where ¢u' Cou and W, are complex and small compared
with the mean values ¢s' cps and Wyge Substituting
equations (8) - (11) into equations (1) - (7),
neglecting terms containing higher powers of the
small quantities (e.g. V¢, . VF,, VWy,...etc), and
equating terms of the same order, we obtain the
following two parts of the problem:

(a) The Steady-Flow Part of the Problem

v?

s

0 in R (12)

on 9R, we have the following boundary conditions

(e, + V) . VF=0 on Fg(x) = 0 (13)

(14)

0 on Wg(r)

(e, *+ Vo) . W
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Mcp (E) == (Vo = V9 ,) - (2o, + Vg

+ Vogy) =0 on W (r) =0 (15)

Vg > 0 far from Fg(r) = 0 and W (r) = 0 (16)

(6 + V6) . VFg = 0 on Fs(?)] =0 (17)
B ;f E.’ x ZE.E

Acps(r) = - (V¢sr - V¢sz) . (2e + V¢sl4~V¢Sz) =0
on E)‘g(.r_)l =0

TS Ppe. U7 Ts.E. (18)

(b) The Unsteady~Flow Part of the Problem
2
V¢ =0 in R (19)
u

iwF + (e, + Vog) . VFy + Vb, . VFg = O (20)
on FS(;3 =0

iwd, + (e + Vog) . VW, + Voy . Vg =0 (21)

on Wg(r) =0

200(dy = b)) + (Vo = Vb, . (2e + Vo, +

V¢ZS) + (V¢IS - V¢Zs) . (V¢1u + v¢2u) =0 (22)
on We(xr) = 0
iy + (e + Vog) . VRy + Vy . VFg = 0
on Fs(;5| =0
T fpE T T Ts.E (23)
iy + (e + Vog) . Wiy + Vo, . WHg = 0
on Fs(;3| =0
= IpEs ¥ T TsEl (24)

IV. Method of Solution

1. Steady-Flow Part of the Problem

The solution of this problem is obtained
following Kandil (1974). For the sake of com-
pletion, the procedure is outlined here.

It is well known that a bound circulation
exists around a lifting surface at an angle of
attack in a steady~flow. This fact can be
established in the mathematical model of the lift-
ing problem by introducing a type of mathematical
singularity which exhibits this circulation, One
of the simplest singular solutions of Laplace's
equation, equation (12), which enjoys such a
property is that of a potential vortex.



In addition, the assumption of irrotational flow
in R and the infinity condition, equation (16),
tell us that the vorticity distribution must be
on the inner surface of R. Thus, the lifting
surface Fg may be replaced by a bound-vortex
sheet of continuous vorticity distribution.
Furthermore, we approximate this vortex sheet by
a bound-vortex lattice.

On the other hand, Kelvin's theorem of the
spatial conservation of circulation tells us that
a vortex line cannot simply end in the fluid.
Hence the ends of the bound-vortex lattice along
the edges of separation must be connected to
vortex lines which extend downstream to infinity.
These lines are called free-vortex lines. They
represent the wake surface Wg and hence their
shape and positions are unknowns of the problem.
We discretize each free-vortex line into small,
straight finite segments (near~wake region) and
one semi-infinite line (far-wake region). This
discretization process gives the potential to the
vortex lines to model the force-free wake surface
upon imposing the boundary conditigns given by
equations (14) and (15).

Kutta condition-is enforced at the edges of
separation by not placing any bound-vortex line
along these edges. In addition, when the solution
of the problem is obtained; the wake surface is
rendered as a force-free surface and as a stream—
surface. Hence, in the limit as we approach the
edges of separation from the wake surface, the
pressure will be automatically continuous at these
edges. So far, the model satisfies equations (12)
and (16) and partially satisfies Kutta condition.

To complete the model for the exact solution of
the problem, we need to enforce the boundary
conditions of equations (13) - (15). This is
achieved by defining certain points on Fg and Wg
where the boundary conditions are satisfied.

These points are called control points. On the
wing surface, a control peint is the average point
of the four corner points of the quadrilateral
vortex element., On the wake surface, a control
point is the upstream end of a vortex segment.

The seolution is effected through an iterative
method to simultaneously satisfy the boundary
conditions of equations (13) - (15). To accom-
plish this task, we need to express Vg as a
function of the circulation distribution I'g(¥).
This is achieved by Bict-Savart's Law for a
straight vortex line. Equation (13) is then
satisfied at the control points of the wing
surface, Here, we should recall that the wake
surface Wg(¥) is not known yet and hence we
initially need to assume it (assume the position
and shape of the free-vortex lines). The solution
of this equation provides an initial distribution
of the circulation.

Next, the kinematical and dynamical boundary
conditions on the wake surface, equations: (l14) and
(15), are satisfied. We recall that the wake
surface Wg(¥) was replaced by a number of vortex
lines and each one of them was discretized into a
series of small, straight segments (near wake :
region) and one semi-~infinite segment (far-wake
region). Now, we can combine the two conditions
on the wake into a very simplified condition in

#q

which we require that each vortex segment in the
wake must be aligned with the local velocity at
its upstream end. This means that the vortex
segment would be a segment of a streamline [this
satisfies the kinematical boundary condition,
equation (14)], and it also means that the force
on the vortex segment is zero according to Kutta-
Joukowski theorem [this satisfies the dynamical
boundary condition, equation (15)}. Obviously,
this is in an advantage of the discrete vortex
approach in solving the nonlinear, steady lifting
surface problem. Once the boundary conditions on
the wake surface are satisfied, we satisfy the’&
boundary condition on the wing sur; ¢ with the'
new wake surface. The solution mo ck and
forth from the wing surface to the s surface
where the corresponding boundary conditions are
satisfied by the most updated circulations and
wake surface until convergence of the free-
vortex lines is achieved. Once this step is com-
pleted successfully, we obtain the circulation
distribution I'g(¥) and the wake surface Wg(T) as
well.

2. Unsteady~Flow Part of the Problem

The solution of this problem is obtained
following Kandil (1978). For the sake of comple-
tion, the procedure is outlined here.

The smooth flow at the edges of separation is
continuously disturbed by the harmonic oscillation
of the wing. Accordingly, the bound circulation
around the wing changes continuously and this is
accompanied by a continuous process of formation
and shedding of vortexes from the edges of sep-
aration to restore the smooth flow at these edges.
Within any infinitesimal time step, the change in
the bound circulation around the wing is met by
the formation of an infinitesimal wortex strip
emanating from the edges of separation which has
a strength of equal and opposite sense to the
change of the bound circulation. In the next time
step this vortex strip is convected downstream and
a new infinitesimal vortex strip emanates from the
edges of separation. The newly formed vortex
strip is smoothly connected to the preceding
vortex strip. Thus, a vortex sheet is continuocusly
growing downstream as the harmonic oscillation
continues. If the continuous motion of the wing
is discritized into a series of impulsive motions,
the continuously growing vortex sheet can be re-
placed by a growing vortex lattice in the wake.
Therefore, the discrete vortex model which is
used for the solution of this part of the problem
has to account for this shedding process at least
in the near wake region. This is achieved by
employing a discrete vortex model similar to that
of the steady flow problem but with the exception
of modeling the wake by a vortex lattice in the
vicinity of the edges of separation. The circula-
tion distribution of the vortex lattice in the wake
is related to the circulation distribution of the
bound lattice on the wing. The solution of this
part of the problem is effected by a different
approach from the one used for the steady part of
the problem. Here, the basic unknowns are the
velocity potential ¢,(¥) and the wake surface Wy
(r). The former unknown appears in the equations
of the boundary conditions, equations (20) - (22)
in the form of V¢, and ¢y; ~ $j,- These two terms
can be explicitly expressed in terms of circula-



tion distribution Fu(Eﬁ. For V¢,, this is
achieved by Biot-Savart's law while for ¢u1 - $un
it is achieved by the fact that the jump of the

velocity potential across a vortex sheet at a cer-

tain location is equal to the strength of the
sheet at this location.

To show the relationship between V¢  and Pu'
we consider a short, straight vortex segment of
length T and strength I', Figure 2 . The induced
velocity V(¥,t) at a field point p is found by
Biot-Sacart's Law.

V(r,t) = (I'/47h?) (cosf; =~ cos,)h (25)
where
cosf; = T ;1/2r1, cosf, = T"<;2/£r2 and h =

T x T,/ (26)

If the vortex segment is undergoing a small
harmonic oscillation at a certain frequency w,
then h, T, T, and ¥, are time dependent. This
can be due to the oscillation of the wing if the
vortex segment is on its surface or due to the
oscillation of the wake if the wake segment is on
its surface. In each case, the strength of the
vortex segment is also time dependent. Now,
according to our assumption of small harmonic
oscillation, we write each of K, %, ¥, , ¥, and T
as the sum of a time~dependent part and a small
time~dependent part as follows:

h=T +h, =B + Fexplint) ]

L= + Eu = Tg. + Tuexp(iwt) = Tg

+(A7:2 - Afl)exp(iwt)

=gt la T Fis * riuexp(lwt) =rg y @D
- Aflexp(iwt)

I, =X,  + T, =X,g+ rzuexp(iwt) =1r,q

- AR, exp (iwt)

I'= FS + Fu = Fs +.Fuexp(iwt) J

Moreover, we assume that the vortex segment is
rigid, i.e.

7] -

2] or T

or &_ . All-ls . Alz =0 (28)
Substituting equation (26) into equation (25),
using equations (27) and (28), and neglecting
terms which contian powers of the small time-

dependent quantities higher than one, we obtain

V(r,t) = Vg(x) + V() exp(int) (29)
where

Vs () = (GTg/4mthl)hg (30)
V(r) = (hg/4ath}) [(Iy - 2Ighg . h/hd)6 (31)
+ AL, = AL« (x /x - T, /7, )
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+ T . T o/xls) (R . Ti/1)¢)

- TR, » 1,o/r20) (Rg . T,9)]

+ (GT /4mehd)ny’

G=Tg . T o/rg - By . Ty/ryg (32)
hg =1 ¢ x T,5/8 (33)
hy = (8%, x g - Ay x 1,5) /% (34)

Equation (32) gives the relationship between v
and Fu for a single vortex segment. For the
bound-vortex lattice which represents the wing
and the free-vortex lines which represent the
wake, the relationship between V¢, at any field
point and Ty distribution is simply obtained as
the sum of V;, as given by equation (31), over all
the vortex segments of the bound-vortex lattice
and the free-vortex lines. In this relationship,
we notice that A(i.e, A%, or A¥,) is completely
known for any vortex segment on the wing surface
because Fy is known but they are unknown for any
segment on the wake surface because W, is unknown
with the exception of the upstream ends of the
vortex segments emanating from the edges of
separation of the wing. Along these edges, AT is
completely known because the wing surface F, is
known.

Next, we show the relationships between W, or
VW, and A¥. This is achieved by considering a
small quadrilateral nonplanar element whose corners
are labeled a, b, ¢ and 4, figure 3 . The
position vector of the average point m.on the
element is given by
Iy = (ry + 1 + T + 1g) /4 (35)
The nonplanar element is approximated by a planar
element which passes through point m perpendicular
to the unit normal which is defined by (36)

o= (fc - ta) x (1p - ra)/ (T = ra) x (rp - rd)

The equation of the plane is given by
Wr,t) = (-7 .n=0 (37)

Now, we write the vectors ;;, ;g, ;E and ;é in the
same form as that of equation (27), i.e.

Ty = Tag * Tay = Tyg * Tauexp(iWt) = Tae +}
Aiéexp(iwt)

Iy = Tpg + §bu = Tpg + Tpuexp(iWt) = Tpg +

Ay exp (iwt) > (38)
To = Tpog + Toy = Tgg + Toyexp(ivt) = Fog +
Azéexp(iwt)

Ty = Fag + Tgy = Eas + Tgexpliwt) = Ty  +

AT gexp (iwt) J




Substituting eguations (35) and (36) into
equation (37), using equation (38), and ne~-
glecting terms which contain powers of the small
time-dependent quantities higher than one, we
obtain

W(r,t) = Wg(x) + Wy(r)exp(iwt)

(39)

where
Ws(r) = (r - ¥, ) . ng (40)
Wl = (T - Tpe) « Oy = Iy « Og (41)
F— (Tag + Ths + Tes + ¥das)/4 (42)
ng = (;Es - Tas) x (;ﬁs - ;as)/ (;Es - Tas) X%

(rps = ¥gs) (43)
Ty = (A%, + ATy, + AR + AL,)/4 (44)
n, = My - (0 - Bu)ngl/ (Teg - Tag) X

(tps - Tgs) (45)
ﬁg = (;as - Tpg) X Ay + (;és - ;Es) X A@g +

(Tps = Tag) ¥ Og + (rgg = Tag) x Ay (46)

The gradient of Wu(;5 is found from equation (41)
by

Wy (r) =1y (47
Equation (41) - (47) give the required expressions
of W, and VWy in terms of AT.

Thus, the boundary conditions of equations (20)
- (22) may be rewritten in terms of Iy and A¥ as
the basic unknowns of the problem. These equa-
tions and equation (28) as well are solved simul-
taneously for the circulation distribution T of
the wing and the wake and the position of the wake
AT,

More details of the method of solution and
its implementation can be found in reference 8.

V. Numerical Examples

A computer program is developed to implement
the present discrete-vortex-perturbation method to
rectangqular wings through a CDC-6600 computer of
NASA-Langley Research Center, Hampton, Va. The
program solves the steady flow part of the problem
(or it may read it if it is available) then it
proceeds to the solution of the unsteady flow part
of the problem. The output includes a detailed
solution for the steady and unsteady parts of the
wake shape, circulation distribution (F,,ﬂl) on
both the bound and free vortex lattices, pressure
distribution (ACP ’ AC ), total-load coefficients

(Cngr Cmg» Ch ——-etc) and total-load deri-
vative coeff1c1en%s [(Cnu oy’ (Cmu)a ~==etc.)].

The following numerical examples include rec-
tangular wings undergoing small pitching and
plunging oscillations at different mean angles of
attack and with different axes of rotation,
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Figure 4 depicts a typical solution &f the
steady wake surface for a rectangular wing at 15°
angle of attack. The views given in the figure
show a side view, a top view, and a three-
dimensional view. The different parameters on
the following diagrams are defined as follows:

AR = aspect ratio
b = half wing span
¢y = root chord

A¢y = segment length in the chordwise direction

_Fnu
Cmu = TP yZsp UZSp ¢y

pitching-moment coefficient calculated about the
axis of rotation

C,
(Cne), = 30

moment derlvatlve coefficient

= amplitude of unsteady

amplitude of unsteady pitching-

F
Chy . - amplitude of unsteady normal-
T %0 Uozosp
force coefficient
(Chy) o = dCnu _ amplitude of unsteady normal-
nu’ g Ja

force derivative coefficient

R, I refer to real and imaginary parts

Sp = area of wing planform

Xo/Cr location of axis of rotation

Y/b = spanwise station

0, = mean angle of attack

Oy amplitude of pitching oscillation
(positive with nose up)

¢h = phase angle between pitching and plung-
ing oscillations

[

S A
= 95é32-= reduced frequency

o

amplitude of plunging oscillation

downward)

hy =
(positive
Figures 5 and 6 show the amplitudes of real and
imaginary parts of the unsteady normal-force and
pitching-moment coefficients versus the reduced
frequency for a rectangular wing of AR = 1.6
which undergoes a small plunging oscillation and
a small pitching oscillation about an axis of
rotation at the 1/4 chord length. For the low
range of frequency 0-0.1, the curves show a
linear behavior. For higher frequencies, the
amplitudes are varying nonlinearly with the
frequency. The effect of the mean angle of attack
is obvious in the figures. The amplitudes in-
crease as the mean angle of attack increases.
This shows that the classical unsteady analysis
in which the unsteady part of the problem is '
solved about a zero mean angle of attack cannot be
extended to the present case.

Figures 7 and 8 show the amplltudes of the real
and imaginary parts of the unsteady pressure co-
efficient for the same case at different spanwise
stations (¥/b = 0.375, 0.875) and different fre-
quencies {(w=0.05, 0.2). '

Figures 9 and 10 show polar diagrams of the
complex amplitudes of the normal-force and pitching-
moment derivative coefficients for a rectangular
wing undergoing small plunging and pitching oscil-
lations with different plunging amplitudes. The
first and second quadrants of figure 9 and the
third and fourth quadrants of figure 10 are the
stable regions. The other quadrants in these
figures are the unstable regions. For the cases



considered, we see that for h, = -0.0001 (opposite
phase to the pitching motion) and for the range

of reduced frequency w = 0-1.2, the wing extracts
energy from the air and there is a tendency to
aerodynamic flutter.

The execution time on the CDC~6600 computer for
a 4 % 4 bound lattice and one chord length of the
free-vortex lattice behind the trailing edge was
167 CP seconds. This computation time includes
the solution of the steady and unsteady parts of
the problem where the iterative methods of solu-
tions are used for both 8 . The case used 120,500
B of memory storage.

VI. Concluding Remarks

A numerical-perturbation method is developed
to solve the nonlinear problem of unsteady flow
about finite rectangular wings which undergo small
amplitude oscillations about large mean angles of
attack. The problem is decoupled into a time-in-
dependent part and a time dependent part. The
former part is solved by the nonlinear-discrete
vortex method while the latter part is linearized
about the former nonlinear part. Furthermore,
time is factored out from the latter part and the
resulting equations may be solved simultaneously
without iteration. To reduce the. required memory
storage on the computer, the latter part is solved
by iteration®.

The present method is superior to the step~by-
step time approach4 from the computation time point
of view.
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Figure 5. Amplitudes of real and imaginary parts
of the normal-force coefficient versus the reduced
frequency for a rectangular wing; AR = 1.6, 0y =
0.0017°, xg/cp = 0.25, 4 x 4 lattice.
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Figure 6, Amplitudes of real and imaginary parts
of the pitching-moment coefficient about the axis
of rotation versus the reduced frequency for a

. rectangular wing; AR = 1.6, o, = 0.0017°, xg/cy =
0.25, 4 x 4 lattice.

Figure 8. Chordwise vafiation of the amplitu?es

of real and imaginary parts of pressure~coefficient
at different spanwise stations for a reqtangular
wing; AR = 1.6, Oy = 0.0017, w = 0.2, hy = 0,0001,
4 x 4 lattice. ) .
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Figure 9. Polar diagram of the complex amplitudes

of normal-force derivative (Cy,l). for a rectangular

wing undergoing a pitching oscillacion about the going a piteni

1/4-chord and a vertical translation with different 3 “ching oscillation

amplitudes; AR = 1.6, o, = 17°, o, = 0.0017°, :;d_a v§rt1ca1 translation wi::onggzseiii;fﬁgrd ,

Xg/Cy = 0.25, ¢p = 0.0, 4 x 4 lattice, s = 1.6, ap=17°, a, = 0.0017 Xo/C, = p.itudes;
h = 0.0, 4 x 4 lattice. " Folfp = 0.25,

Fi i
ofg;:§iigé' Polar diagram of the complex amplitudes
ive (Cmu)a for a rectangular wing under-
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